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1 Lempel-Ziv Coding for Ergodic Processes

1.1 Intuition behind Lempel-Ziv coding

Last time, we discussed a comma-free binary representation of natural numbers using
log n+ 2 log log n+ k bits (k = 5). To send n, send dlog ne bits (tells us n ∈ 1, . . . , 2dlogne).
To send dlog ne, send dlogdlog nee bits (same idea). Send dlogdlog nee as dlogdlog nee 0s,
followed by a 1.

Example 1.1. To send n = 17, we have dlog ne = 5 and dlog 5e = 3. Then transmit

0001 101︸︷︷︸
represents 5

10001.

Example 1.2. To send n = 14, we have dlog ne = 4 and dlog 5e = 2. Then transmit

00011001110,

which can be parsed as
0001 100 1110.

To motivate the LZ’77 scheme (which compresses to the entropy rate for any stationary
ergodic process), let’s consider i.i.d.

. . . , X−2, X−1, X0, X1, X2, . . .

at the level of blocks of size L. The situation is that . . . , X−3, X−2, X−1 is common knowl-
edge to the compressor and decompressor (or the transmitter and receiver). We need to
send (X0, X1, . . . , XL−1). We do this by finding

inf{m ≥ 1 : (X0, X1, . . . , XL−1) = (X−mLX−mL+1, . . . , X−mL+L−1}
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and sending m using the comma-free encoding of N. Since the blocks of length L of the
type (X−jL, X−jL+1, . . . , X−jL+L−1) are independent, m will be geometrically distributed,
conditioned on (X0, X1, . . . , XL−1). Then

P(m = j | (X0, . . . , XL−1) = xL−10 ) = p(xL−10 )(1− p(xL−10 ))j−1, j = 1, 2, . . . .

So the conditional expectation on this event is

E[m | (X0, . . . , XL−1) = xL−10 ] =
1

p(xL−10 )
.

Also, for all xL−10 ,

P(m > K̃
1

p(xL−10 )
| XL−1

0 = xL−10 ) =
∑

j=dK̃ 1

p(xL−1
0 )

e

p(xL−10 )(1− p(xL−10 ))j−1

≤ (1− p(xL−10 ))dK̃(1/p(xL−1
0 ))e−1

. e−K̃

as L→∞.
The upshot is that we can, with probability close to 1, convey m with log K̃

p(xL−1
0 )

+

log log K̃
p(xL−1

0 )
+ k bits (conditioned on XL−1

0 = xL−10 ) for any K̃, as L→∞. Note that

∑
xL−1
0

p(xL−10 )

(
log

K̃

p(xL−10 )
+ log log

K̃

p(xL−10 )
+ k

)
� H(X0, . . . , XL−1)

as L→∞.

1.2 Ergodicity and Kac’s theorem

Definition 1.1. A two-sided process (Xn, n ∈ Z) with Xn ∈X for finite X is ergodic if

1. The process is stationary.

2. Every shift-invariant event should have probability 0 or probability 1.

By shift-invariant, we mean

{(. . . , X−1, X0, X1, . . . ) ∈ A} = {(. . . , X−2, X−1, X0, . . . ) ∈ A}.

Shift-invariant events can be very interesting.

Example 1.3. The event {there are infinitely many 1s in the sequence} is shift-invariant.
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Example 1.4. The event {the lim sup of the sequence is 1} is shift-invariant.

Theorem 1.1 (Pointwise ergodic theorem, Birkhoff). If (Xn, n ∈ Z) is ergodic and φ :
X k → R, then

lim
n→∞

1

n

n−1∑
t=0

φ(Xt, Xt+1, . . . , Xt+k−1) = E[φ(X0, . . . , Xk−1)]

almost surely.

To look back in the past in the general ergodic case, we use the following theorem:

Theorem 1.2 (Kac). Let (Xn, n ∈ Z) be an ergodic process with Xn ∈X for all n, where
X is finite. Let

Qb(i) = P(X−i = b,Xj 6= b for −i+ 1 ≤ j ≤ −1 | X0 = b).

Then
∞∑
i=1

iQb(i) =
1

P(X0 = b)
.

Proof. Fix b ∈X . Define the events

Aj,k := {X−j = b,X−j+1 6= b, . . . ,Xk−1 6= b,Xk = b}, k ≥ 0, j ≥ 1.

These events are disjoint. We claim that

P

⋃
j,k

Aj,k

 = 1

if P(X0 = b) > 0. This is because b occurs some finite time in the future and some time in
the past; we can see this from, for example, looking at the sample averages of the ergodic
theorem with φ as the indicator of {b}.

Hence,
∞∑
j=1

∞∑
k=0

P(Aj,k) = 1.

But this equals

∞∑
j=1

∞∑
k=0

P(Xk = b)Qb(j + k) = P(X0 = b)

∞∑
i=0

iQb(i)

because P(Xk = b) = P(X0 = b) by stationarity and because the number of ways to get
j + k = i is i.
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Now for LZ’77, assume that (Xn, n ∈ Z) is an ergodic process. For any fixed L ≥ 1,
define

RL(X0, X1, . . . , XL−1) := min{j ≥ 1 : (X−j , X−j+1, . . . , X−j+L−1) = (X0, . . . , XL−1)}.

By Kac’s theorem,

E[RL(X0, X1, . . . , XL−1) | XL−1
0 = xL−10 ] =

1

p(xL−10 )
.

The transmitter will send RL(X0, X1, . . . , XL−1) by comma-free encoding (in order to con-
vey X0). Let

λL(xL−10 ) = logRL(XL−1
0 ) + log logRL(XL−1

0 ) + 5.

Next time, we will show that

1

L
E[λL(XL−1

0 )]
L→∞−−−−→ H,

the entropy rate of the process.
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