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1 Lempel-Ziv Coding for Ergodic Processes

1.1 Intuition behind Lempel-Ziv coding

Last time, we discussed a comma-free binary representation of natural numbers using
logn + 2loglogn + k bits (k = 5). To send n, send [logn] bits (tells us n € 1,...,2M°en),
To send [logn], send [log[logn]] bits (same idea). Send [log[logn]] as [log[logn]|] Os,
followed by a 1.

Example 1.1. To send n = 17, we have [logn] =5 and [log5]| = 3. Then transmit

0001 101  10001.
-

represents 5
Example 1.2. To send n = 14, we have [logn] = 4 and [log5]| = 2. Then transmit

00011001110,

which can be parsed as
0001 100 1110.

To motivate the LZ’77 scheme (which compresses to the entropy rate for any stationary
ergodic process), let’s consider i.i.d.

coy Xog, X, Xo, X, Xo,

at the level of blocks of size L. The situation is that ..., X 3, X o, X 4 is common knowl-
edge to the compressor and decompressor (or the transmitter and receiver). We need to
send (Xo, X1,...,Xr—1). We do this by finding

inf{m >1:(Xo,X1,...,Xr1) = (XX mrt1,- -, Xomrsr-1}



and sending m using the comma-free encoding of N. Since the blocks of length L of the
type (X_jr, X—jr+1,..., X—jr+1r—1) are independent, m will be geometrically distributed,
conditioned on (Xo, X1,...,Xr—1). Then

Pim=yj|(Xo,...,Xp-1) = xéfl) = p(xéfl)(l —]U(:l:éfl))j_l7 ji=1,2,....

So the conditional expectation on this event is

1
Eim | (Xo,...,Xz-1) =25 = —
p(zg™")
Also, for all acg—l,
~ 1 3 3 3 IS
p(l‘o ) 1
=K
0
< (1 — p(ak=1))[EQ/pg= )11
Se ¥
as L — oo. B
The upshot is that we can, with probability close to 1, convey m with log p(%*l) +
~ . 0
log log zﬁ + k bits (conditioned on Xél_l = a:g_l) for any K, as L — oco. Note that
0

Z plzs™) (10g ( K ) +loglog([§_1) +k> = H(Xo,...,X1p-1)
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as L — oo.

1.2 Ergodicity and Kac’s theorem
Definition 1.1. A two-sided process (X,,,n € Z) with X,, € 2" for finite 2" is ergodic if

1. The process is stationary.
2. Every shift-invariant event should have probability 0 or probability 1.
By shift-invariant, we mean
{(., X1, X0, X1,...) € Ay ={(..., X2, X_1,Xp,...) € A}
Shift-invariant events can be very interesting.

Example 1.3. The event {there are infinitely many 1s in the sequence} is shift-invariant.



Example 1.4. The event {the lim sup of the sequence is 1} is shift-invariant.

Theorem 1.1 (Pointwise ergodic theorem, Birkhoff). If (X,,,n € Z) is ergodic and ¢ :
2% - R, then

n—1

. 1
Jim - ; A(Xt, X1y, Xepr—1) = E[@(Xo, ..., Xp—1)]

almost surely.
To look back in the past in the general ergodic case, we use the following theorem:

Theorem 1.2 (Kac). Let (X,,n € Z) be an ergodic process with X,, € Z for all n, where
2 is finite. Let

Qi) =P(X_; =0,X; #b for —i+1<j<—1|Xo=0).

Then
1

o0
;in(i) = B(Xo=b)

Proof. Fix b€ Z". Define the events
A =1{X_j=0,X_j41#b,..., X1 # b, X, = b}, k>0,7>1.

These events are disjoint. We claim that

U4jr] =1
7,k

if P(Xo = b) > 0. This is because b occurs some finite time in the future and some time in
the past; we can see this from, for example, looking at the sample averages of the ergodic
theorem with ¢ as the indicator of {b}.

Hence,
oo o0
> D P4

7=1k=0
But this equals
DD P(Xk = b)Qu(j + k) = P(Xo = b) Y iQ(i)
j=1k=0 i=0

because P(Xj = b) = P(Xo = b) by stationarity and because the number of ways to get
Ak =1iisi. 0



Now for LZ’77, assume that (X,,n € Z) is an ergodic process. For any fixed L > 1,
define

RL(XQ,Xl,. . -aXL—l) = mln{] Z 1: (X_j,X_j+1, e 7X—j+L—1) = (X(), e 7XL—1)}-

By Kac’s theorem,

_ _ 1
E[RL(Xo, X1,..., Xp1) | Xy ' =af = —5—
p(zy™)
The transmitter will send Ry (Xo, X1, ..., X1z—1) by comma-free encoding (in order to con-

vey Xp). Let
Ap(z5™Y) =log Rp(XE™Y) 4+ loglog R (X 1) + 5.

Next time, we will show that

L—oo

1 _
ZED(XE) 2

the entropy rate of the process.
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